5,251 research outputs found

    Boundary-layer Flows Past an Hemispherical Roughness Element: DNS, Global Stability and Sensitivity Analysis

    Get PDF
    We investigate the full three-dimensional instability mechanism arising in the wake of an hemispherical roughness element immersed in a laminar Blasius boundary layer. The inherent three-dimensional flow pattern beyond the critical Reynolds number is characterized by coherent vortical structures called hairpin vortices. Direct numerical simulation is used to analyze the formation and the shedding of hairpin packets inside the shear layer. The first bifurcation characteristics are investigated by global stability tools. We show the spatial structure of the linear direct and adjoint global eigenmodes of the linearized Navier-Stokes operator and use structural sensitivity analysis to locate the region where the instability mechanism acts. Results show that the “wavemaker” driving the self-sustained instability is located in the region immediately past the roughness element, in the shear layer separating the outer flow from the wake region

    A timeline for massive star-forming regions via combined observation of o-H2_2D+^+ and N2_2D+^+

    Full text link
    Context: In cold and dense gas prior to the formation of young stellar objects, heavy molecular species (including CO) are accreted onto dust grains. Under these conditions H3+_3^+ and its deuterated isotopologues become more abundant, enhancing the deuterium fraction of molecules such as N2_2H+^+ that are formed via ion-neutral reactions. Because this process is extremely temperature sensitive, the abundance of these species is likely linked to the evolutionary stage of the source. Aims: We investigate how the abundances of o-H2_2D+^+ and N2_2D+^+ vary with evolution in high-mass clumps. Methods: We observed with APEX the ground-state transitions of o-H2_2D+^+ near 372 GHz, and N2_2D+^+(3-2) near 231 GHz for three massive clumps in different evolutionary stages. The sources were selected within the G351.77-0.51 complex to minimise the variation of initial chemical conditions, and to remove distance effects. We modelled their dust continuum emission to estimate their physical properties, and also modelled their spectra under the assumption of local thermodynamic equilibrium to calculate beam-averaged abundances. Results: We find an anticorrelation between the abundance of o-H2_2D+^+ and that of N2_2D+^+, with the former decreasing and the latter increasing with evolution. With the new observations we are also able to provide a qualitative upper limit to the age of the youngest clump of about 105^5 yr, comparable to its current free-fall time. Conclusions: We can explain the evolution of the two tracers with simple considerations on the chemical formation paths, depletion of heavy elements, and evaporation from the grains. We therefore propose that the joint observation and the relative abundance of o-H2_2D+^+ and N2_2D+^+ can act as an efficient tracer of the evolutionary stages of the star-formation process

    Post-test simulations for the NACIE-UP benchmark by STH codes

    Get PDF
    This paper illustrates the results obtained in the last phase of the NACIE-UP benchmark activity foreseen inside the EU SESAME Project. The purpose of this research activity, performed by system thermal–hydraulic (STH) codes, is finalized to the improvement, development and validation of existing STH codes for Heavy Liquid Metal (HLM) systems. All the participants improved their modelling of the NACIE-UP facility, respect to the initial blind simulation phase, adopting the actual experimental boundary conditions and reducing as much as possible sources of uncertainty in their numerical model. Four different STH codes were employed by the participants to the benchmark to model the NACIE-UP facility, namely: CATHARE for ENEA, ATHLET for GRS, RELAP5-3D© for the “Sapienza” University of Rome and RELAP5/Mod3.3(modified) for the University of Pisa. Three reference tests foreseen in the NACIE-UP benchmark and carried out at ENEA Brasimone Research Centre were analysed from four participants. The data from the post-test analyses, performed independently by the participant using different STH codes, were compared together and with the available experimental results and critically discussed

    Level-3 Calorimetric Resolution available for the Level-1 and Level-2 CDF Triggers

    Get PDF
    As the Tevatron luminosity increases sophisticated selections are required to be efficient in selecting rare events among a very huge background. To cope with this problem, CDF has pushed the offline calorimeter algorithm reconstruction resolution up to Level 2 and, when possible, even up to Level 1, increasing efficiency and, at the same time, keeping under control the rates. The CDF Run II Level 2 calorimeter trigger is implemented in hardware and is based on a simple algorithm that was used in Run I. This system has worked well for Run II at low luminosity. As the Tevatron instantaneous luminosity increases, the limitation due to this simple algorithm starts to become clear: some of the most important jet and MET (Missing ET) related triggers have large growth terms in cross section at higher luminosity. In this paper, we present an upgrade of the Level 2 Calorimeter system which makes the calorimeter trigger tower information available directly to a CPU allowing more sophisticated algorithms to be implemented in software. Both Level 2 jets and MET can be made nearly equivalent to offline quality, thus significantly improving the performance and flexibility of the jet and MET related triggers. However in order to fully take advantage of the new L2 triggering capabilities having at Level 1 the same L2 MET resolution is necessary. The new Level-1 MET resolution is calculated by dedicated hardware. This paper describes the design, the hardware and software implementation and the performance of the upgraded calorimeter trigger system both at Level 2 and Level 1.Comment: 5 pages, 5 figures,34th International Conference on High Energy Physics, Philadelphia, 200

    Emergence of pseudogap from short-range spin-correlations in electron doped cuprates

    Get PDF
    Electron interactions are pivotal for defining the electronic structure of quantum materials. In particular, the strong electron Coulomb repulsion is considered the keystone for describing the emergence of exotic and/or ordered phases of quantum matter as disparate as high-temperature superconductivity and charge- or magnetic-order. However, a comprehensive understanding of fundamental electronic properties of quantum materials is often complicated by the appearance of an enigmatic partial suppression of low-energy electronic states, known as the pseudogap. Here we take advantage of ultrafast angle-resolved photoemission spectroscopy to unveil the temperature evolution of the low-energy density of states in the electron-doped cuprate Nd2-x_{\text{2-x}}Cex_{\text{x}}CuO4_{\text{4}}, an emblematic system where the pseudogap intertwines with magnetic degrees of freedom. By photoexciting the electronic system across the pseudogap onset temperature T*, we report the direct relation between the momentum-resolved pseudogap spectral features and the spin-correlation length with an unprecedented sensitivity. This transient approach, corroborated by mean field model calculations, allows us to establish the pseudogap in electron-doped cuprates as a precursor to the incipient antiferromagnetic order even when long-range antiferromagnetic correlations are not established, as in the case of optimal doping.Comment: 17 pages, 3 figure

    The core population and kinematics of a massive clump at early stages: an ALMA view

    Full text link
    High-mass star formation theories make distinct predictions on the properties of the prestellar seeds of high-mass stars. Observations of the early stages of high-mass star formation can provide crucial constraints, but they are challenging and scarce. We investigate the properties of the prestellar core population embedded in the high-mass clump AGAL014.492-00.139, and we study the kinematics at the clump and the clump-to-core scales. We have analysed an extensive dataset acquired with the ALMA interferometer. Applying a dendrogram analysis to the Band o-H2D+\rm H_2D^+ data, we identified 22 cores. We have fitted their average spectra in local-thermodinamic-equilibrium conditions, and we analysed their continuum emission at 0.8mm0.8 \, \rm mm. The cores have transonic to mildly supersonic turbulence levels and appear mostly low-mass, with Mcore<30MM_\mathrm{core}< 30 \, \rm M_\odot. Furthermore, we have analysed Band 3 observations of the N2H+\rm N_2H^+ (1-0) transition, which traces the large scale gas kinematics. Using a friend-of-friend algorithm, we identify four main velocity coherent structures, all of which are associated with prestellar and protostellar cores. One of them presents a filament-like structure, and our observations could be consistent with mass accretion towards one of the protostars. In this case, we estimate a mass accretion rate of M˙acc2×104Myr1 \dot{M}_\mathrm{acc}\approx 2 \times 10^{-4} \rm \, M_\odot \, yr^{-1}. Our results support a clump-fed accretion scenario in the targeted source. The cores in prestellar stage are essentially low-mass, and they appear subvirial and gravitationally bound, unless further support is available for instance due to magnetic fields.Comment: Accepted for publication in Ap

    Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence

    Get PDF
    The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically-gated oxide interfaces, ultracold Fermi atoms, and cuprate superconductors, which are characterized by an intrinsically small phase-stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.Comment: 24 pages, 9 figures, Main Text and Supplementary Informatio

    Towards high-temperature coherence-enhanced transport in heterostructures of a few atomic layers

    Get PDF
    The possibility to exploit quantum coherence to strongly enhance the efficiency of charge transport in solid state devices working at ambient conditions would pave the way to disruptive technological applications. In this work, we tackle the problem of the quantum transport of photogenerated electronic excitations subject to dephasing and on-site Coulomb interactions. We show that the transport to a continuum of states representing metallic collectors can be optimized by exploiting the "superradiance" phenomena. We demonstrate that this is a coherent effect which is robust against dephasing and electron-electron interactions in a parameters range that is compatible with actual implementation in few-monolayer transition-metal-oxide (TMO) heterostructures

    Thermo-mechanical behavior of surface acoustic waves in ordered arrays of nanodisks studied by near infrared pump-probe diffraction experiments

    Full text link
    The ultrafast thermal and mechanical dynamics of a two-dimensional lattice of metallic nano-disks has been studied by near infrared pump-probe diffraction measurements, over a temporal range spanning from 100 fs to several nanoseconds. The experiments demonstrate that, in these systems, a two-dimensional surface acoustic wave (2DSAW), with a wavevector given by the reciprocal periodicity of the array, can be excited by ~120 fs Ti:sapphire laser pulses. In order to clarify the interaction between the nanodisks and the substrate, numerical calculations of the elastic eigenmodes and simulations of the thermodynamics of the system are developed through finite-element analysis. At this light, we unambiguously show that the observed 2DSAW velocity shift originates from the mechanical interaction between the 2DSAWs and the nano-disks, while the correlated 2DSAW damping is due to the energy radiation into the substrate.Comment: 13 pages, 10 figure
    corecore